119 research outputs found

    Dynamics of matter-wave and optical fields in superradiant scattering from Bose-Einstein condensates

    Full text link
    We study superradiant scattering off Bose-Einstein condensates by solving the semiclassical Maxwell-Schroedinger equations describing the coupled dynamics of matter-wave and optical fields. Taking the spatial dependence of these fields along the condensate axis into account, we are able to reproduce and explain many of the characteristic features observed in the experiments of Inouye et al. [Science 285, 571 (1999)] and Schneble et al. [Science 300, 475 (2003)], such as the shape of the atomic side-mode distributions for forward and backward scattering, the spatial asymmetry between forward and backward side modes, and the depletion of the condensate center observed for forward scattering.Comment: 4 pages, 2 figure

    Correlated directional atomic clouds via four-heterowave mixing

    Full text link
    We investigate the coherence properties of pairs of counter-propagating atomic clouds, produced in superradiant Rayleigh scattering off atomic condensates. It is shown that these clouds exhibit long-range spatial coherence and strong nonclassical density cross-correlations, which make this scheme a promising candidate for the production of highly directional nonclassically correlated atomic pulses.Comment: 12 pages, 3 figure

    Condensation temperature of interacting Bose gases with and without disorder

    Full text link
    The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.Comment: 7 pages, 2 figure

    Early Stage of Superradiance from Bose-Einstein Condensates

    Full text link
    We investigate the dynamics of matter and optical waves at the early stage of superradiant Rayleigh scattering from Bose-Einstein Condensates. Our analysis is within a spatially dependent quantum model which is capable of providing analytic solutions for the operators of interest. The predictions of the present model are compared to the predictions of a closely related mean field model, and we provide a procedure that allows one to calculate quantum expectation values by averaging over semiclassical solutions. The coherence properties of the outgoing scattered light are also analyzed, and it is shown that the corresponding correlation functions may provide detailed information about the internal dynamics of the system.Comment: 27 pages, 8 figure

    Spatial effects in superradiant Rayleigh scattering from Bose-Einstein condensates

    Full text link
    We present a detailed theoretical analysis of superradiant Rayleigh scattering from atomic Bose-Einstein condensates. A thorough investigation of the spatially resolved time-evolution of optical and matter-wave fields is performed in the framework of the semiclassical Maxwell-Schroedinger equations. Our theory is not only able to explain many of the known experimental observations, e.g., the behavior of the atomic side-mode distributions, but also provides further detailed insights into the coupled dynamics of optical and matter-wave fields. To work out the significance of propagation effects, we compare our results to other theoretical models in which these effects are neglected.Comment: 14 pages, 13 figure

    Passage-time statistics of superradiant light pulses from Bose-Einstein condensates

    Full text link
    We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.

    Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials

    Get PDF
    We discuss a method to create two-dimensional traps as well as atomic shell, or bubble, states for a Bose-Einstein condensate initially prepared in a conventional magnetic trap. The scheme relies on the use of time-dependent, radio frequency-induced adiabatic potentials. These are shown to form a versatile and robust tool to generate novel trapping potentials. Our shell states take the form of thin, highly stable matter-wave bubbles and can serve as stepping-stones to prepare atoms in highly-excited trap eigenstates or to study `collapse and revival phenomena'. Their creation requires gravitational effects to be compensated by applying additional optical dipole potentials. However, in our scheme gravitation can also be exploited to provide a route to two-dimensional atom trapping. We demonstrate the loading process for such a trap and examine experimental conditions under which a 2D condensate may be prepared.Comment: 16 pages, 10 figure

    Nonperturbative Effects on T_c of Interacting Bose Gases in Power-Law Traps

    Full text link
    The critical temperature T_c of an interacting Bose gas trapped in a general power-law potential V(x)=\sum_i U_i|x_i|^{p_i} is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T_c fulfills the relation (T_c-T_c^0)/T_c^0= D_1(eta)a + D'(eta)a^{2 eta}+ O(a^2) with T_c^0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T_c, and eta=1/2+\sum_i 1/p_i the potential-shape parameter. The terms D_1(eta)a and D'(eta) a^{2 eta} describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a^{2 eta} contribution is qualitatively explained in terms of the Ginzburg criterion.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/35
    • …
    corecore